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Dark Energy Cosmology with
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Recent observations of the Cosmic Microwave Background, Supernovae and Sloan
Digital Sky Survey (SDSS) show that our universe has a critical energy density, and
roughly 2/3 of it is dark energy, which drives the accelerating expansion of the cosmos.
In view of the astrophysical data, we find that the equation of state parameter of the dark
energy lies in a narrow range around w = −1. In this paper, we construct a cosmology
model with a Rarita-Schwinger field to realize the equation of state parameter w < −1
or w > −1 and discuss its stability.
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1. INTRODUCTION

Observations of the Cosmic Microwave Background (CMB) show that the
universe is almost flat (Bennett et al., 2003; Netterfield et al., 2002), it follows
immediately that our universe has a critical energy density. We know that the
baryon makes up of 4% of the critical energy density, and dark matter makes
up of 23%. Thus, there must be something makes up of 73% of the critical
energy density, which we named dark energy. The astrophysical data of type Ia
supernovae reveal that the universe is currently undergoing a period of accelerating
expansion (Riess et al., 1998; Tonry et al., 2003). From Einstein equation we can
get ä/a = −4π/3(ρ + 3p). In order to realize ä > 0, the equation of state w
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of dark energy must satisfy that w = p/ρ < −1/3. From above we can get the
feature of dark energy: negative pressure that can drive the accelerating expansion
of our universe.

Cosmologists have proposed many candidates for dark energy to fit the current
observations such as cosmological constant, tachyon (Sen, 2002), quintessence
(Caldwell et al., 1998; Gao and Shen, 2002), phantom (Caldwell, 2002) and so on.
The major difference among these models are that they predict different equation
of state of the dark energy and different history of the cosmos expansion.

Scalar fields have come to play an important role in current models of the
dark energy. Quintessence and phantom are based on a scalar field with positive
and negative kinetic energy respectively. Quintessence was firstly put forward by
Caldwell and Steinhardt. They constructed the model based on a scalar field with
positive kinetic energy and can realize the equation of state −1 < w < −1/3.
However, the analysis of many astrophysics data show that the equation of state
−1 < w was not obligatory (Wang and Tegmark, 2004). It is natural to ask what
lies on the other side at w < −1. To answer this question, Caldwell proposed the
phantom model, which is also constructed with a varying scalar field. Phantom
has some strange properties. For example, the energy density of it increases with
time. It also violates the dominant-energy condition, which helps prohibit time
machines and wormholes. However, phantom is an interesting topic because it fits
current observations. A striking consequence of dark energy with w < −1 is that
our universe would end in a “Big Rip” (Caldwell et al., 2003).

In this paper, we construct a dark energy model in terms of a
Rarita–Schwinger field, which has been widely studied in other cosmological
topics (Christodulakis and Papadopoulos, 1988; Shen et al., 1992). The excel-
lence of this model is that it can realize the equation of state either w > −1 or
w < −1 without switching the sign of the kinetic term in Lagrangian. Therefore,
we can unify both quintessence and phantom in the Rarita–Schwinger field model.
The presentation of the equation of state w has been derived from the Einstein
equation, and the condition for w < −1 or w > −1 is obtained. We also studied
the evolution and attractor property of this model, and show a late time de Sitter
attractor, which corresponds to an equation of state w = −1 and a cosmic den-
sity parameter �rs = 1 by choosing an exponential potential. The big rip is also
discussed in our model.

2. THE MODEL

The flat Robertson–Walker metric is given by

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) (2.1)

where a (t) is the scale factor of the universe.
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Since the space is homogeneous, the Einstein field equations require the
Rarita–Schwinger field to be a function of the time only. We choose ψm = ψm(t)
and γψ ≡ γ iψi = 0(i = 1, 2, 3). Thus, the lagrangian of the Rarita–Schwinger
field takes the very simple form

L = √−g

[
− i

2
(ψ+

i ψ̇i − ψ̇+
i ψi) − V

]
(2.2)

The variation of the lagrangian yields the equations of motion of the field

iψ̇i + 3

2
i
ȧ

a
ψi + ∂V

∂ψ+
i

= 0 (2.3)

iψ̇+
i + 3

2
i
ȧ

a
ψ+

i − ∂V

∂ψi

= 0 (2.4)

From the above equations, we can obtain

˙(ψ+
i ψi) + 3Hψ+

i ψi = 0 (2.5)

Thus, in an expanding universe ψ+
i ψi decays as fast as 1/a3. However, it

does not imply that the energy density of the Rarita–Schwinger field follows the
same behavior.

The Einstein field equations in this model are

3
ȧ2

a2
= κ2

3
(V + ργ ), (2.6)

2
ä

a
+ ȧ2

a2
= κ2

3

[
V + i

2
(ψ+

i ψ̇i − ψ̇+
i ψi) − Pγ

]
. (2.7)

where ργ is the density of barotropic fluid with a equation of state Pγ = (γ − 1)ργ .
The Rarita–Schwinger field contributes the energy density ρrs and pressure Prs as
follows

ρrs = V (2.8)

Prs = −V − i

2
(ψ+

i ψ̇i − ψ̇+
i ψi) (2.9)

The equation of state of the spinor is

w = Prs

ρrs

= −V − i
2 (ψ+

i ψ̇i − ψ̇+
i ψi)

V
. (2.10)

Considering (2.3) and (2.4), we can rewrite (2.10) as

w = Psp

ρsp

= −V + V ′ψ+
i ψi

V
. (2.11)

where a prime (′) denotes a derivative with respect to ψ+
i ψi.
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The equation of state w of the Rarita–Schwinger field can be either larger than
−1 or smaller than −1 under different conditions. Under the condition V > 0,
when V ′ψ+

i ψi > 0, then w > −1; and w < −1 while V ′ψ+
i ψi < 0. Thus, the

Rarita–Schwinger field can be used instead of quintessence or phantom by choos-
ing different form of potential without switching the sign of the kinetic term in
Lagrangian.

3. EVOLUTION AND STABILITY OF THE MODEL

Now we discuss the stability of this model, to do so, we rewrite the Einstein
equations as

Ḣ = −κ2

2
(ργ + Pγ + V ′ψ+

i ψi) (3.1)

ρ̇γ = −3H (ργ + Pγ ) (3.2)

Introduce new variables as follows:

x = κψ+
i ψi√

3H 2
, (3.3)

y = κ
√

V√
3H

, (3.4)

z = κH (3.5)

N = ln a. (3.6)

We choose a specific potential to discuss the evolution of the equation of state
and the cosmic density parameter of the Rarita–Schwinger field. We consider the
exponential potential, which has been widely investigated.

V (ψ+
i , ψi) = V0e

−λκ3ψ+
i ψi (3.7)

Thus, the system becomes

dx

dN
= −3x + γ x(1 − y2) − 3

√
3λx2y2z2, (3.8)

dy

dN
= 3

√
3

2
λxyz2 + 3

2
γy(1 − y2) − 3

√
3

2
λxy3z2, (3.9)

dz

dN
= −3

2
zγ (1 − y2) + 3

√
3

2
λxy2z3. (3.10)

Also we have a constraint equation

κ2ργ

3H 2
+ y2 = 1. (3.11)
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Fig. 1. Phase plane for different initial x, y and z. We choose
λ = 0.0001,γ = 1.

In the following, we will investigate a physical meaningful solution and discuss
its stability. We can get critical points by setting the right hand of the equations
(3.8) (3.9) (3.10) to zero. So we get a meaningful point (xc, yc, zc) of the system
as (0, 1, zc) where zc could be any constant, which corresponding to a de Sitter
phase. In this case, the equation of state would evolute to −1 and the cosmic
energy density parameter of the Rarita–Schwinger field would rise to 1. We write
the variables near the critical point (xc, yc, zc) in the form x = xc + u, y = yc +
v, z = zc + δ with u, v, δ the perturbations of the variables near the critical points.
Substitute the expression to equations (3.8) (3.9) (3.10) we can get a matrix of the
perturbations




−3 0 0

0 −3γ 0

3
√

3

2
z3
cλ 3zcγ 0


 (3.12)

whose eigenvalues determine the stability of the critical points. In our de Sitter case,
the eigenvalues are (−3,−3γ, 0), which indicate the critical point is a dynamical
attractor. We can get some insight into the property of the system by drawing a
phrase plane Fig. 1.

The numerically study results of the equation of state and the cosmic density
parameter in our model are shown in Figs. 2 and 3.

As pointed by Caldwell et al. (1998) the scalar factor will blow up in a
finite proper time with a constant negative value of w. However, in our model the
equation of state w would approach to −1 dramatically and then in principle the
big rip can be avoided.
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Fig. 2. The equation of state of the Rarita–Schwinger field by
choosing λ = 0.0001, γ = 1.

4. CONCLUSIONS

In conclusion, we show that the Rarita–Schwinger field could play the role of
dark energy in driving the accelerating universe, and it can realize the equation-of-
state w < −1 or w > −1 under different condition without switching the sign of
the kinetic term. We find a physical meaningful critical point which corresponding
to the de Sitter phase and prove it is a dynamical attractor by choosing an expo-
nential potential. The evolution of the equation of state and the cosmic density
parameter of the Rarita–Schwinger field have also been discussed by numerical
analysis. Finally, we show that in our model the the big rip can be avoided. The
most important excellence of this model is that it can realize w < −1 without
negative kinetic energy and fit the current observations.

Fig. 3. The cosmic density parameter of the Rarita–Schwinger
field by choosing λ = 0.0001, γ = 1.
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